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APPENDIX A: 
Ecosystem-Scale Selenium Model for the San Francisco 
Bay-Delta Regional Ecosystem Restoration Implementation 
Plan (DRERIP) 
Theresa S. Presser1,† and Samuel N. Luoma1,2

A.1—SELENIuM SouRcE DETAIL: REguLATED      
LoADS AND oThER INPuTS

Five oil refineries process seleniferous crude oil and 
discharge selenium (Se) to the North Bay (submodel 
A, Figure 2). Organic-rich marine basins are the 
primary source of elevated concentrations of Se in 
crude oils (Presser and others 2004). Regulation of 
Se for oil refiners is occurring through water qual-
ity Se criteria promulgated by the USEPA for the 
Bay–Delta (USEPA 1992, 2000a) and limits on efflu-
ent loads and concentrations enacted by the State in 
1992 (SFBRWQCB 1992a, 1992b, 1993). Compliance 
with permit limits was achieved in 1998, reducing 
Se loads from those measured during 1986 to 1992 
(Cutter 1989; Cutter and Cutter 2004; Presser and 
Luoma 2010a). An iterative mass emissions strat-
egy was used in lieu of site-specific water quality 
objectives because water-column Se concentrations 
were considered not predictive of Se bioaccumula-
tion (SFBRWQCB 1993). A zone of dilution that 
enables discharge of concentrated Se effluent (34 to 
50 µg L-1) directly into the bay is allowed as a part 
of water quality regulations. 

Additional North Bay sources of Se under regulatory 
guidance are the agricultural drains and tributaries 
that discharge from the west into the Yolo Bypass 
upstream of tidal influences in the Sacramento River 
(Larry Walker Associates 2005; Presser and Luoma 
2006). Comprehensive monitoring would be necessary 
to establish (1) when these Se inputs influence the 
Sacramento River system and the North Delta; and 
(2) how they are affected by the geologic Se sources 
of the northern California Coast Ranges, the ground-
water hydrology of the area, and the water manage-
ment practices for the cities of Davis and Woodland, 
including wetland disposal and treatment (Presser 
and others 1990; Larry Walker Associates 2005). 

Privately owned wastewater treatment plants and 
industries other than refineries also discharge to the 
North Bay (SWRCB 2012). Improved data collection 
would be needed to adequately quantify these Se 
inputs, but in comparison to permitted oil refinery 
Se effluents, they are considered secondary (Cutter 
and San Diego–McGlone 1990; SWRCB 2012). Other 
potential North Bay sources to consider and monitor 
with sufficient flow and Se concentration data for 
accurate Se load calculations are watershed streams 
that mainly flow to the bay under wet conditions. 
These streams, however, are not known to be influ-
enced by documented Se  sources or conditions of Se 
enrichment. 
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A regulated source of Se from the south is the San 
Joaquin River. The river receives discharge of sel-
eniferous agricultural drainage from approximately 
100,000 acres of farmland in the Grassland Drainage 
Area of the western San Joaquin Valley (USBR 
1995, 2001, 2009a, 2009b; Presser and Luoma 2006; 
USFWS 2009) (submodel A, Figure 2). These drainage 
waters are affected by Se sources in the California 
Coast Ranges; and, in addition, the arid climate and 
poor drainage of the southern region intensifies Se 
accumulation (Presser and Luoma 2006). The river-
ine and south Delta receiving-water habitats (e.g., 
backwaters, Stockton Deep Water Ship Channel) 
are diverse hydrologic environments in terms of Se 
inputs, Se recycling, and flow (Presser and Luoma 
2006). Additionally, the San Joaquin River is under-
going restoration with the goal of increasing flows 
in the upper reaches to re-establish salmon runs 
(USBR 2007a). The Delta–Mendota Canal, which car-
ries water south from the Delta, also contains dis-
charge from seleniferous agricultural drains and the 
San Joaquin River, because a portion of the river is 
recycled back to the San Joaquin Valley (Presser and 
Luoma 2006; USFWS 2009; USBR 2011) (submodel 
A, Figure 2).

Regulation of Se inputs to the San Joaquin River is 
implemented through the Grassland Bypass Project 
(SJVDP 1990; USBR 1995; SFEI 1996–2013). An orig-
inal agreement signed in 1996 allowed use of a por-
tion of the existing San Luis Drain, the San Joaquin 
River, and one of its tributaries (Mud Slough) for 
discharge of agricultural drainage from the Grassland 
Drainage Area. This agreement has been re-negoti-
ated twice and allows waterways to remain out of 
compliance with Se water quality criteria until 2019 
(USBR 1995, 2001, 2009a, 2009b). 

Compliance with regulatory targets has gradu-
ally reduced the load of Se discharged into the San 
Joaquin River (SFEI 2012), although the exact load 
targets vary with water–year type (CDWR 2010). The 
ultimate regulatory target is zero discharge to the San 
Joaquin River. Water conservation, source control, 
agricultural land retirement, drainage recycling, and 
drainage reuse on salt tolerant crops all contribute to 
the reduced Se discharge to the river. As a result of 
these efforts in 2009, approximately 89% of the Se 

in agricultural drainage from the Grasslands Bypass 
Project was stored in-valley (SFEI 2012). Mitigation 
measures for this project reduce exposure and attrac-
tiveness of habitat to wildlife, and include a flood-
ing contingency plan, monitoring, and provision of 
50 acres of rice fields for migratory bird mitigation. 
The waste treatment lands and management systems 
are integrated within terrestrial and wetland habitats 
of the valley, a practice that poses some continuing 
risks to wildlife, particularly migrating and nesting 
birds (Presser and Schwarzbach 2008).

The sustainability of these local controls in a limited 
area of the western San Joaquin Valley is not yet 
clear. Their management requires considerable effort, 
cost, and storage capacity within groundwater aqui-
fers, soils, and other mass balance compartments. Nor 
is it clear that it is feasible to expand on a regional 
scale the formulated in-valley drainage strategies 
(e.g., reverse osmosis; enhanced evaporation; Se bio-
treatment; and surface waste disposal ponds and 
dumps) and the associated drainage collection and 
waste-stream facilities (Schoups and others 2005; 
Presser and Schwarzbach 2008; USBR 2006, 2007b, 
2008, 2010). Regional drainage plans and propos-
als address management in both the 100,000 acres 
of the Grassland Drainage Area and the adjacent 
600,000 acres of the Westlands Water District (USBR 
2006, 2007b). Westlands Water District has not been 
allowed to discharge Se to surface waterways since 
1986, an action that exacerbates the effects of the 
substantial reservoir of Se and salt already stored 
within the soils and aquifers of that region (Presser 
and Luoma 2006). Population level effects to aquatic 
resources (including waterfowl) from Se are pre-
dicted both under today’s conditions in the western 
valley (i.e., the proposed no-action alternative) and 
under proposed in-valley alternatives for provision of 
drainage service to these areas (USBR 2006, 2007b). 
Wetland mitigation acreage would be necessary to 
compensate for avian mortality from drainage reuse 
and disposal. 

In general, progress has been made through regula-
tory efforts to control Se in-valley and to reduce its 
transport to the Bay–Delta. But understanding the 
links between Delta water supply and valley drain-
age reduction is key to the success of any potential 
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agricultural Se solution as remedies and restora-
tion move forward both in the western San Joaquin 
Valley and in the Bay–Delta (Presser and Luoma 
2006; California State Senate 2009; Presser and oth-
ers 2009). The potential for release of Se within the 
Bay–Delta watershed continues to drive trade-offs 
such as those among agricultural productivity, deg-
radation of groundwater aquifers, export via the San 
Joaquin River, and Se exposure of fish and wildlife. 
For example, infrastructure changes in the Delta 
could allow more water to be exported to the west-
ern San Joaquin Valley, and more San Joaquin River 
water to enter the Bay. However, implementation of a 
drainage solution could decrease the amount of water 
exported to western San Joaquin Valley farms, in an 
effort to be consistent with proposed drainage reduc-
tion and land retirement strategies. Changes also are 
pending through national legislation (e.g., U.S. House 
of Representatives 2012) to amounts of water dedi-
cated for environmental purposes (e.g., San Joaquin 
River restoration), to protections for threatened 
and endangered species, and to California’s system 
of water rights and transfers. Hence, risks from Se 
should also be a consideration in future actions pro-
posed for water supply, water delivery, and drainage 
management within the Bay–Delta watershed. 

A.2—EXPoSuRE: FooD WEBS, SEASoNAL 
cycLES, AND hABITAT uSE

DRERIP modeling considers specifics for the follow-
ing predator species.

Diving Ducks

Species of diving ducks that overwinter in the estu-
ary from September through April include surf scoter, 
black scoter, greater scaup, and lesser scaup. White-
winged scoter are infrequent visitors to the Bay (sub-
model D, Figure 5). Scaup can make up approximate-
ly 50% of total waterfowl in the Bay and up to 92% 
of migrating Pacific Flyway scaup populations may 
be in the Bay at one time (Poulton and others 2002). 
Prey preference in diving ducks helps differentiate 
Se risk in that scoter and scaup consume C. amuren-
sis, while, for example, canvasback prefer Macoma 
balthica. Surf scoters move throughout the Northern 
Reach during overwintering as prey availability 

changes; thus, they can be exposed to different clam 
species (i.e., C. amurensis in the North Bay and V. 
philippinarum in the Central Bay) (De La Cruz and 
others 2008; De La Cruz 2010). Pacific Coast diving 
ducks move north in the spring to breeding grounds 
in Alaska and Canada (De La Cruz and others 2009) 
(submodel D, Figure 5). 

clapper Rail

The endangered California clapper rail inhabits and 
breeds in salt marshes that surround the Bay–Delta, 
mainly in tidal inundation zones. Individuals have 
a small annual home range and a smaller breeding 
range, and their movement depends on tidal cycles 
(Takekawa and others 2011). 

Sturgeon

In general, sturgeon are very long-lived (50 to 
100 years). White sturgeon migrate upstream to 
spawn, but they are described as semi-anadromous 
because they spend a substantial amount of their 
life in the estuary, especially the North Bay (USFWS 
2008a) (submodel D, Figure 5). The endangered green 
sturgeon is more marine than white sturgeon, spend-
ing limited time in the estuary (NOAA Fisheries 2006; 
Israel and others 2008a; Israel and Kimley 2008b]. 

Sacramento Splittail

This species, except when they are spawning, are 
largely confined to the Delta, Suisun Bay, Suisun 
Marsh, the lower Napa River, and the lower Petaluma 
River (i.e., 0 to 18 psu) (Kratville 2008). Thus, chronic 
exposure to estuary contaminants is a concern. 
Sacramento splittail spawn both in the upper Delta 
and the estuary (submodel D, Figure 5). Large-scale 
spawning occurs only in years when watershed 
floodplains are significantly inundated.

Salmonids

Migratory salmon and trout use the Delta during 
migration upstream and emigration to the ocean 
(submodel D, Figure 5). Juvenile Chinook salmon 
may spend from 3 months to 2 years in freshwater 
after emergence and before migrating to estuarine 
areas as smolts, and then into the ocean to feed and 
mature. Steelhead trout may be best described as 
nearly year-around spawners (i.e., juveniles may hold 
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over for many months to a year and may not emi-
grate to the ocean at all) (USFWS 2008a). Emigrating 
Central Valley steelhead use the lower reaches of 
the Sacramento River and the Delta, including tidal 
marsh areas, non-tidal freshwater marshes, and other 
shallow water areas, for rearing.

Delta Smelt

This species is of concern to any contaminant 
because (1) they spent their 1-year life span in the 
Delta, or close to it, thus being chronically exposed; 
(2) in any month, two or more life stages can be 
present in Suisun Bay; and (3) dramatic declines in 
population threaten extinction (USFWS 2008a). 

A.3—FISh AND WILDLIFE hEALTh: 
EcoToXIcoLogy AND EFFEcTS

DRERIP modeling considers details of Se-specific 
toxicological information for the following predator 
species. 

Scaup and Scoter

These species consume sub-tidal clams voraciously 
from their arrival in October to their departure in 
April as they stage for migration. This pattern puts 
them at risk from Se effects that influence many 
facets of their migratory and breeding behavior (sub-
models E and F, Figures 6 and 7). Liver Se concen-
trations in surf scoter and greater scaup increase as 
they stage for migration in the Bay (Ohlendorf 1989; 
Takekawa and others 2002; De La Cruz and others 
2008; De La Cruz 2010), as has been found in other 
overwintering locations (Petrie and others 2007). 
Studies of waterfowl relate liver Se concentrations to 
impaired body condition as measured by total protein 
content (Takekawa and others 2002); stress hormone 
(corticosterone) levels (Wyland and others 2003); 
oxidative stress enzyme activity (Hoffman and oth-
ers 1998, 2002); liver lesions (Heinz and Fitzgerald 
1993a, 1993b); and alopecia, and beak and nail 
necrosis (O’Toole and Raisbeck 1998). Diminished 
immune system function was associated with a liver 
Se concentration of 5 µg g-1 wet weight (or approxi-
mately 18.5 µg g-1 dw) in adult mallards (Hoffman 

2002). Poor body condition, in turn, has been linked 
to decreased winter survival (Haramis and others 
1986; Hohman 1993) and also can lead to delayed 
migration (Drent and others 2006). Delayed migration 
is linked to missed key prey events along migratory 
routes (i.e. herring spawns); delayed breeding that 
results in decreased nesting success; or missed breed-
ing opportunities in boreal forest and arctic nesting 
species (Drent and others 2006). Breeding propensity 
in many waterfowl species is dependent on females 
attaining fat and protein thresholds before migrating 
(Alisauskas and Ankney 1992; Gorman 2005).

Scaup and scoter migrating from the Bay must arrive 
in arctic or boreal regions in good condition to initi-
ate nesting, and to have a high likelihood to breed 
(Alisauskas and Ankney 1992; Esler and others 2001). 
Species differences affect migration and breeding 
(De La Cruz and others 2009). For example, spring 
migration of scaup is the most protracted of all North 
American ducks, with late nesting also a factor (21 
to 56 days from arrival to nest initiation) (Fox and 
others 2005). In terms of maternal transfer of Se to 
eggs and effects to offspring themselves, laboratory 
studies of mallard and lesser scaup eggs showed the 
potential for depuration of Se during migration to 
breeding grounds (Heinz 1993; Heinz and Fitzgerald 
1993a, b; DeVink and others 2008a; USFWS 2008a; 
Badzinski and others 2009). Studies of female white-
winged scoter at breeding grounds in the Northern 
Territories showed the persistence of an overwinter-
ing liver Se signal, but no relationship between liver 
Se and egg follicle Se (DeVink and others 2008b, c). 
Thus, the potential in this species for reproductive fit-
ness effects from Se exposure in staging areas may 
remain in breeding grounds, but egg Se may repre-
sent the Se exposure at the breeding grounds. Studies 
of lesser scaup (Fox and others 2005; DeVink and 
others 2008c) argue that egg hatchability and female 
health effects from Se are not a concern in breeding 
grounds. The authors note that sampling sizes were 
small, sampling locations were limited, birds collected 
were breeding survivors, and studies did not include 
tracking birds nor measuring Se diet to directly con-
nect Se exposure in staging areas to effects in breed-
ing areas.
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clapper Rail

Concern, in general, is for aquatic-dependent breed-
ing birds that are toxicologically sensitive to Se. 
Bay–Delta clapper rails show reproductive effects 
from a combination of contaminants, with mercury 
being the most prevalent (Lonzarich and others 1992; 
Schwarzbach and others 2006). As noted previously, 
diet composition (i.e., which species of clam, mussel, 
or crab is consumed) and whether prey species are 
efficient bioaccumulators of Se also are important 
drivers of Se exposure. The same factors would be of 
concern for other Se-sensitive breeding birds that are 
residents (e.g., stilts) (Ackerman and Eagles–Smith 
2009).

White Sturgeon

Females reproduce repeatedly over their long life-
span, and have a 2-year internal egg maturation that 
is conducive to potential Se loading of eggs (Linville 
2006) (submodels E and F, Figures 6 and 7). Each 
reproductive cycle includes at least 2-years of yolk 
deposition in the eggs. During this time, accumulated 
Se is efficiently transferred from the female liver to 
the yolk of her eggs in a dose-responsive manner 
(Kroll and Doroshov 1991; Linares and others 2004; 
Linville 2006). After fertilization and hatching, the 
developing larvae metabolize over 80% of the stored 
yolk within a 10-day period. This rapid exposure of 
Se to the developing larvae can lead to severe devel-
opment defects (Linville 2006).

Unlike bird species where deformed chicks are out-
ward evidence of Se toxicity, adult fish can survive 
and appear healthy despite the fact that extensive 
reproductive failure (i.e., limited survival of deformed 
larvae) is occurring. In habitats with a history of Se 
contamination, the possibility exists that the absence 
or decline of a potentially vulnerable species is attrib-
utable to Se. Reproductive and developmental disrup-
tion can be detected in the measurement of species 
recruitment (e.g., “young of the year”). However, in 
the case of sturgeon, monitoring is typically accom-
plished by tracking sub-adults and adults, which are 
generally at least 9 years old (Schaffter and Kohlhorst 
1999). Thus, poor recruitment is usually not detected 
until a decade or more after the hatching of the 
affected year-class. Additionally, sturgeon exhibit 

delayed sexual maturity, with males typically matur-
ing at age 10 to 12 years and females at 15 to 32 
years (Doroshov 1985; Doroshov and others 1997). If 
recruitment dips to levels insufficient to eventually 
replace the reproductive adults removed through fish-
ing and mortality, the population size will decrease. If 
reduced recruitment is prolonged, the population can 
become jeopardized because any managed recovery in 
recruitment will not affect the population until those 
year classes become reproductively mature (15 to 
32 years for females). 

Several studies researched dietary Se exposure spe-
cific to effects in white sturgeon (Linares and oth-
ers 2004; Linville 2006; Tashjian and others 2006). 
Analysis of data for Se exposure in white sturgeon is 
given in USFWS (2008a, 2008b). 

Sacramento Splittail

Adult splittail feed on bivalves in the North Bay 
(Stewart and others 2004). Exposure specifically to 
Se was investigated in several laboratory studies of 
splittail (Teh and others 2004; Deng and others 2007; 
Rigby and others 2010).

chinook Salmon and Steelhead Trout

Concern is for sensitive life stages, and for females 
during egg development and maternal transport of 
Se (USFWS 2008a, 2008b) (submodel E, Figure 6). 
Species sensitivity distributions of fish species based 
on either an alevin mortality or larval deformity 
endpoint show some species of salmonids are more 
toxicologically sensitivity (EC10 egg- or ovary-based) 
when compared to other species of fish (Janz 2012). 
Hamilton and others (1990) conducted exposure stud-
ies specific to Chinook salmon. As noted previously, 
no recent or comprehensive study of Se concentra-
tions in Chinook salmon and steelhead trout from the 
estuary and migration corridors are available. 

A.4—DETERMINATIoN oF huMAN hEALTh 
guIDELINES AND LINkS To WILDLIFE AND 
FISh hEALTh

Selenium is an essential micronutrient in animals 
(Stadtman 1974). Beneficial effects in humans stem 
mainly from the role of Se as an antioxidant. In the 
U.S., the national average daily dietary intake exceeds 
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the nutritional requirements for Se (USDHHS 2002; 
Institute of Medicine 2000; see also submodel G, 
Figure 8). However, Se also is the most toxic of all 
biologically essential elements in mammals, with a 
very narrow window between what is beneficial and 
what is toxic (Venugopal and Luckey 1978). Selenium 
is a target analyte for fish sampling programs to pro-
tect human health, with regulation based on systemic 
selenosis (USEPA 2000b). Fish advisory Se science 
and, hence, current fish advisories, do not consider 
possible reproductive effects that occur at lower 
exposures than direct poisoning of juvenile and adult 
humans (USDOI 1998). Fish consumption advisories 
illustrated here are given in dry weight (dw) to facili-
tate comparison to fish health values.

The USEPA issued revised fish Se advisories in 2000. 
In 2008, Se guidance was issued for tissue levels and 
screening values for California sport fish (USEPA 
2000b; OEHHA 2008). National and state advisories 
restrict consumption of fish based upon the Se con-
centration in the fish, the body weight of the con-
sumer, and the rate of consumption (e.g., grams per 
day) compared to a reference dose (RfD) (submodel 
G, Figure 8). Assimilation efficiency is assumed to 
be 100%. The USEPA defines the RfD as an estimate 
of a daily oral exposure for the human population 
(including sensitive subgroups) that is likely to be 
without an appreciable risk of deleterious effects dur-
ing a lifetime (with uncertainty spanning perhaps an 
order of magnitude). It’s derivation includes use of 
uncertainty factors generally applied to reflect limi-
tations of the data used. Hence, at a specified body 
weight, each combination of Se concentration in food 
and consumption rate is converted to, essentially, an 
uptake rate that can be compared to the recommend-
ed RfD. Pregnant women, children, and subsistence 
fisher populations are examples of sensitive groups 
for development of specific guidelines. In addition, 
adjustments can be made for background dietary 
intakes, as was done recently in the development of 
fish advisory limits for mercury (USEPA 1997). 

Illustrated here, as examples, are limits for Se con-
centrations in fish as derived for a 70-kg adult con-
suming meals of 227 g (or 8 ounces) of fish (submod-
el G, Figure 8). If one 8-ounce meal provides a daily 
adult RfD of 350 µg Se, then, theoretically, 30 meals 

may be eaten per month. However, USEPA (2000b) 
in general suggests that people eat not more than 
16 fish meals per month. Both USEPA (2000b) and 
the OEHHA (2008) use a Se RfD of 5 µg per kg body 
weight, per day for calculation of fish advisory tissue 
Se concentrations (submodel G, Figure 8). From this 
ingestion rate, the USEPA (2000b) sets a 6.3 µg g-1 
dw in fish (1.5 µg g-1 wet weight; 76% moisture 
assumed) Se health endpoint for unrestricted con-
sumption (i.e., <16 eight-ounce meals per month). 
The OEHHA (2008) sets an advisory fish tissue level 
of 10.4 µg g-1 dw in fish (2.5 µg g-1 wet weight, 
76% moisture assumed) at a consumption rate of 
three 8-ounce servings per week. This state-derived 
limit takes into account the mean daily dietary 
intake of Se as a background consumption rate. The 
OEHHA (2008) also recommends a fish contaminant 
goal (i.e., a Se concentration with no significant 
risk to the average consumer eating 32 g d-1) of 
31 µg g-1 dw (7.4 µg g-1 wet weight, 76% moisture 
assumed). 

Submodel G for Human Health (Figure 8) graphically 
illustrates derived limits for Se concentrations in fish 
tissue (dry weight basis) for various combinations of 
ingestion rate and target dose (i.e., exposure). This 
graph enables comprehensive translation of specific 
local, state, or national guidance (e.g., at national 
per capita, Bay fisher, or national recreational fisher 
consumption rates) to advisory Se concentrations 
in tissue. Derivations also can apply to (1) fisher 
groups (Native American or subsistence) that con-
sume more than an average consumer or (2) sensitive 
individuals that may require limiting consumption. 
We broaden the approach used here from the tradi-
tional use of Csport fish in fish advisories to Cfood to 
provide a conceptual and quantitative connection to 
the universality and importance of dietary pathways 
of Se in determining risk for a range of consumers. 
For example, derivation of advisory Se concentra-
tions could be applied to wildlife species to expand 
interconnection and consistency in modeling (Presser 
and Luoma 2010b). A wildlife criterion (expressed 
as allowable Cfood) for use in modeling of consump-
tion of fish by birds, for example, also could be 
calculated using a species-specific RfD (Presser and 
Luoma 2010b). In regulatory terminology, a wildlife 
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